LaTeX produces the world’s most beautiful mathematical typography. From simple equations to complex multi-line derivations, this guide teaches you to create publication-quality mathematics.
Getting Started with Math Mode
LaTeX has two main math modes:
Inline Math
Use $...$ for math within text:
The equation $E = mc^2$ revolutionized physics.
Output: The equation E = mc² revolutionized physics.
Display Math
Use \[...\] for centered, standalone equations:
The quadratic formula is:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Essential package: Add \usepackage{amsmath} to your preamble for access to advanced math features.
Essential Setup
\documentclass{article}
% Math packages
\usepackage{amsmath} % Essential math features
\usepackage{amssymb} % Extra symbols
\usepackage{amsthm} % Theorem environments
\usepackage{mathtools} % Extensions to amsmath
\begin{document}
% Your math here
\end{document}
Basic Mathematical Notation
Superscripts and Subscripts
% Superscripts (powers)
$x^2$ % x squared
$x^{10}$ % x to the 10th (use braces for multi-digit)
$e^{i\pi}$ % e to the i*pi
% Subscripts
$x_1$ % x sub 1
$x_{n+1}$ % x sub (n+1)
$a_{ij}$ % a sub ij
% Combined
$x_1^2$ % x sub 1, squared
$a_{i}^{n}$ % a sub i, to the n
${x^2}^3$ % (x²)³ - nested powers
Fractions
% Inline fractions
$\frac{1}{2}$ % Half
$\frac{a+b}{c+d}$ % Complex fraction
$\frac{\partial f}{\partial x}$ % Partial derivative
% Display fractions (larger)
\[
\frac{a}{b} \quad \dfrac{a}{b}
\]
% Continued fractions
\[
\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+x}}}
\]
% Small fractions in text
Use $\tfrac{1}{2}$ for compact fractions.
Roots
$\sqrt{x}$ % Square root
$\sqrt[3]{x}$ % Cube root
$\sqrt[n]{x}$ % nth root
$\sqrt{a^2 + b^2}$ % Pythagorean
Greek Letters
Lowercase Greek
| Letter | Command | Letter | Command |
|---|
| α | \alpha | ν | \nu |
| β | \beta | ξ | \xi |
| γ | \gamma | π | \pi |
| δ | \delta | ρ | \rho |
| ε | \epsilon | σ | \sigma |
| ζ | \zeta | τ | \tau |
| η | \eta | υ | \upsilon |
| θ | \theta | φ | \phi |
| ι | \iota | χ | \chi |
| κ | \kappa | ψ | \psi |
| λ | \lambda | ω | \omega |
| μ | \mu | | |
Uppercase Greek
$\Gamma$ $\Delta$ $\Theta$ $\Lambda$
$\Xi$ $\Pi$ $\Sigma$ $\Upsilon$
$\Phi$ $\Psi$ $\Omega$
$\varepsilon$ % ε variant (common in analysis)
$\varphi$ % φ variant (common in physics)
$\vartheta$ % θ variant
$\varrho$ % ρ variant
$\varsigma$ % ς (final sigma)
Operators and Relations
Arithmetic Operators
$a + b$ % Addition
$a - b$ % Subtraction
$a \times b$ % Multiplication (×)
$a \cdot b$ % Multiplication (·)
$a \div b$ % Division
$a / b$ % Fraction bar
$\pm$ % Plus or minus
$\mp$ % Minus or plus
Comparison Relations
$a = b$ % Equals
$a \neq b$ % Not equal
$a < b$ % Less than
$a > b$ % Greater than
$a \leq b$ % Less than or equal
$a \geq b$ % Greater than or equal
$a \ll b$ % Much less than
$a \gg b$ % Much greater than
$a \approx b$ % Approximately equal
$a \sim b$ % Similar to
$a \equiv b$ % Equivalent/identical
$a \propto b$ % Proportional to
Set Operations
$A \cup B$ % Union
$A \cap B$ % Intersection
$A \setminus B$ % Set difference
$A \subset B$ % Proper subset
$A \subseteq B$ % Subset or equal
$A \supset B$ % Proper superset
$x \in A$ % Element of
$x \notin A$ % Not element of
$\emptyset$ % Empty set
$\varnothing$ % Empty set (variant)
Logic Symbols
$\forall$ % For all
$\exists$ % There exists
$\nexists$ % Does not exist (amssymb)
$\neg$ % Negation
$\land$ % Logical and
$\lor$ % Logical or
$\implies$ % Implies
$\iff$ % If and only if
$\therefore$ % Therefore
$\because$ % Because
Large Operators
Sums and Products
% Sums
$\sum_{i=1}^{n} x_i$ % Inline sum
\[
\sum_{i=1}^{n} x_i % Display sum
\]
% Products
$\prod_{i=1}^{n} x_i$ % Inline product
\[
\prod_{k=0}^{\infty} (1+x^{2^k}) % Display product
\]
% Co-product
$\coprod_{i \in I} G_i$
Integrals
% Single integrals
$\int_a^b f(x) \, dx$ % Definite integral
$\int f(x) \, dx$ % Indefinite integral
% Multiple integrals
$\iint_D f(x,y) \, dA$ % Double integral
$\iiint_V f(x,y,z) \, dV$ % Triple integral
$\oint_C \mathbf{F} \cdot d\mathbf{r}$ % Contour integral
% Display style
\[
\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}
\]
Spacing tip: Use \, before dx for proper spacing: \int f(x) \, dx
Limits
% Limits
$\lim_{x \to \infty} f(x)$
$\lim_{n \to \infty} a_n$
$\lim_{x \to 0^+} \frac{1}{x}$
% Display style limits
\[
\lim_{x \to 0} \frac{\sin x}{x} = 1
\]
% Other limit-like operators
$\limsup_{n \to \infty} a_n$
$\liminf_{n \to \infty} a_n$
$\sup_{x \in A} f(x)$
$\inf_{x \in A} f(x)$
$\max_{x} f(x)$
$\min_{x} f(x)$
Matrices and Arrays
Basic Matrices
% Parentheses matrix
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
% Bracket matrix
\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
\]
% Determinant
\[
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix} = ad - bc
\]
% Curly braces
\[
\begin{Bmatrix}
x \\ y \\ z
\end{Bmatrix}
\]
Matrix Types Quick Reference
| Type | Command | Delimiters |
|---|
| Plain | matrix | None |
| Parentheses | pmatrix | ( ) |
| Brackets | bmatrix | [ ] |
| Braces | Bmatrix | |
| Pipes | vmatrix | | | |
| Double pipes | Vmatrix | ‖ ‖ |
Special Matrices
% Identity matrix
\[
I_3 = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
% Diagonal matrix
\[
\text{diag}(\lambda_1, \lambda_2, \lambda_3) =
\begin{pmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3
\end{pmatrix}
\]
% Large matrix with dots
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\]
Inline Matrices
% Small inline matrix
The matrix $\bigl(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\bigr)$
is invertible when $ad - bc \neq 0$.
Multi-line Equations
The align Environment
\begin{align}
f(x) &= x^2 + 2x + 1 \\
&= (x + 1)^2
\end{align}
The & marks the alignment point (usually before =).
Multiple Alignment Points
\begin{align}
x + y &= 10 & 2x - y &= 5 \\
3x + 2y &= 20 & x + 3y &= 15
\end{align}
Unnumbered Equations
% Single unnumbered
\begin{equation*}
E = mc^2
\end{equation*}
% Or simply
\[
E = mc^2
\]
% Align without numbers
\begin{align*}
a &= b + c \\
d &= e + f
\end{align*}
% Selectively remove numbers
\begin{align}
a &= b \nonumber \\
c &= d
\end{align}
Gathered Equations (Centered)
\begin{gather}
x + y = z \\
a + b = c \\
1 + 2 = 3
\end{gather}
Split Long Equations
\begin{equation}
\begin{split}
f(x) &= a + b + c + d \\
&\quad + e + f + g \\
&\quad + h + i + j
\end{split}
\end{equation}
Cases (Piecewise Functions)
\[
|x| = \begin{cases}
x & \text{if } x \geq 0 \\
-x & \text{if } x < 0
\end{cases}
\]
% More complex
\[
f(x) = \begin{cases}
0 & x < 0 \\
\frac{1}{2} & x = 0 \\
1 & x > 0
\end{cases}
\]
Brackets and Delimiters
Auto-sizing Delimiters
% Automatic sizing - highly recommended!
\[
\left( \frac{a}{b} \right)
\]
\[
\left[ \sum_{i=1}^{n} x_i \right]
\]
\[
\left\{ \int_0^1 f(x) \, dx \right\}
\]
All Delimiter Types
\left( ... \right) % Parentheses
\left[ ... \right] % Square brackets
\left\{ ... \right\} % Curly braces
\left| ... \right| % Absolute value
\left\| ... \right\| % Norm
\left\langle ... \right\rangle % Angle brackets
\left\lfloor ... \right\rfloor % Floor
\left\lceil ... \right\rceil % Ceiling
Manual Sizing
% When auto-sizing isn't quite right
\big( \Big( \bigg( \Bigg(
% Example
\[
\Bigg( \bigg( \Big( \big( x \big) \Big) \bigg) \Bigg)
\]
Mixed Delimiters
% Half-open interval
\[
\left[ 0, 1 \right)
\]
% Using \left. and \right. for "invisible" delimiter
\[
\left. \frac{dy}{dx} \right|_{x=0}
\]
Text in Math Mode
% Wrong - letters are italicized as variables
$if x > 0 then y = 1$
% Correct
$\text{if } x > 0 \text{ then } y = 1$
% For function names
$\sin(x)$, $\cos(x)$, $\log(x)$, $\ln(x)$
$\max(a,b)$, $\min(a,b)$, $\gcd(a,b)$
% Custom operators
\DeclareMathOperator{\argmax}{arg\,max}
\DeclareMathOperator{\Tr}{Tr}
$\argmax_x f(x)$
$\Tr(A)$
Mathematical Fonts
% Bold
$\mathbf{x}$ % Bold (upright) - for vectors
$\boldsymbol{x}$ % Bold (italic) - for bold greek/symbols
% Calligraphic
$\mathcal{L}$ % Lagrangian, loss function
% Blackboard bold
$\mathbb{R}$ % Real numbers
$\mathbb{C}$ % Complex numbers
$\mathbb{Z}$ % Integers
$\mathbb{N}$ % Natural numbers
$\mathbb{Q}$ % Rationals
% Fraktur
$\mathfrak{g}$ % Lie algebras
% Roman (upright)
$\mathrm{d}x$ % Differential d
Spacing Commands
% Add space
$a \, b$ % Thin space (3/18 em)
$a \: b$ % Medium space (4/18 em)
$a \; b$ % Thick space (5/18 em)
$a \quad b$ % Quad space (1 em)
$a \qquad b$ % Double quad (2 em)
% Remove space
$a \! b$ % Negative thin space
% Common usage
$\int f(x) \, dx$ % Space before dx
$\sqrt{2} \, x$ % Space after root
$dx \, dy \, dz$ % Spaces between differentials
Common Patterns and Examples
Calculus
% Derivatives
\[
\frac{d}{dx} x^n = nx^{n-1}
\]
\[
\frac{\partial f}{\partial x} \quad
\frac{\partial^2 f}{\partial x^2} \quad
\frac{\partial^2 f}{\partial x \partial y}
\]
% Integrals
\[
\int_0^\infty e^{-x} \, dx = 1
\]
\[
\iint_D (x^2 + y^2) \, dA = \int_0^{2\pi} \int_0^R r^3 \, dr \, d\theta
\]
% Taylor series
\[
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots
\]
Linear Algebra
% Matrix multiplication
\[
AB = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\begin{pmatrix} e & f \\ g & h \end{pmatrix}
= \begin{pmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{pmatrix}
\]
% Eigenvalue equation
\[
A\mathbf{v} = \lambda\mathbf{v}
\]
% Determinant
\[
\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc
\]
% Inner product
\[
\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} u_i v_i
\]
Statistics and Probability
% Expected value and variance
\[
\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) \, dx
\]
\[
\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2
\]
% Normal distribution
\[
f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]
% Probability
\[
P(A|B) = \frac{P(B|A) P(A)}{P(B)}
\]
% Binomial coefficient
\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]
Physics
% Maxwell's equations
\begin{align}
\nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0} \\
\nabla \cdot \mathbf{B} &= 0 \\
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}
\end{align}
% Schrödinger equation
\[
i\hbar \frac{\partial}{\partial t} \Psi = \hat{H} \Psi
\]
% Einstein field equations
\[
R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}
\]
Advanced Techniques
Colored Math
\usepackage{xcolor}
\[
f(x) = \textcolor{blue}{a}x^2 + \textcolor{red}{b}x + \textcolor{green}{c}
\]
% With colored boxes
\[
\boxed{E = mc^2}
\]
\[
\colorbox{yellow}{$\displaystyle \int_0^1 x^2 \, dx$}
\]
Annotated Equations
\usepackage{mathtools}
% Overbrace/underbrace with labels
\[
\overbrace{a + b + c}^{\text{sum}} = \underbrace{x + y}_{\text{total}}
\]
% Arrows with text
\[
A \xrightarrow{\text{transform}} B
\]
\[
A \xleftarrow[\text{below}]{\text{above}} B
\]
Numbered Subequations
\begin{subequations}
\begin{align}
x + y &= 1 \label{eq:first} \\
x - y &= 0 \label{eq:second}
\end{align}
\end{subequations}
% Produces (1a) and (1b)
Custom Delimiters
\usepackage{mathtools}
% Paired delimiters with auto-sizing
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
\DeclarePairedDelimiter{\norm}{\lVert}{\rVert}
\DeclarePairedDelimiter{\inner}{\langle}{\rangle}
% Usage
$\abs{x}$ % |x|
$\abs*{\frac{a}{b}}$ % Auto-sized
$\norm{v}$ % ||v||
$\inner{u,v}$ % <u,v>
Quick Reference Table
Most Used Commands
| Description | Command | Output |
|---|
| Fraction | \frac{a}{b} | a/b |
| Square root | \sqrt{x} | √x |
| Power | x^2 | x² |
| Subscript | x_i | xᵢ |
| Sum | \sum_{i=1}^{n} | Σ |
| Integral | \int_a^b | ∫ |
| Infinity | \infty | ∞ |
| Not equal | \neq | ≠ |
| Less/equal | \leq | ≤ |
| Approximately | \approx | ≈ |
| Times | \times | × |
| Dot product | \cdot | · |
| Arrow | \rightarrow | → |
| Partial | \partial | ∂ |
Common Mistakes to Avoid
1. Forgetting Math Mode
% Wrong
The value of x^2 is 4.
% Correct
The value of $x^2$ is 4.
2. Wrong Function Names
% Wrong (italicized like variables)
$sin(x)$, $log(x)$
% Correct (upright, proper spacing)
$\sin(x)$, $\log(x)$
3. Missing Braces
% Wrong
$x^10$ % Produces x¹0
% Correct
$x^{10}$ % Produces x¹⁰
4. Inconsistent Sizing
% Wrong - delimiters don't scale
$(\frac{a}{b})$
% Correct
$\left(\frac{a}{b}\right)$
Next Steps
Now that you’ve mastered LaTeX math, explore:
LaTeX Cloud Studio tip: Our editor provides real-time math preview, so you can see your equations as you type. Try it at latex-cloud-studio.com.