Learn how to write beautiful mathematical expressions in LaTeX, from basic arithmetic to complex formulas.
Basic Mathematical Expressions
Inline vs Display Math
% Inline math - flows with text
The quadratic formula is $ x = \frac{-b \pm \sqrt{b^ 2 - 4 ac}}{ 2 a} $ .
% Display math - centered on its own line
The quadratic formula is:
\[ x = \frac{-b \pm \sqrt{b^ 2 - 4 ac}}{ 2 a} \]
% Or using equation environment (numbered)
\begin { equation }
x = \frac{-b \pm \sqrt{b^ 2 - 4 ac}}{ 2 a}
\end { equation }
Basic Operations
Expression LaTeX Result Addition a + b
a + b Subtraction a - b
a - b Multiplication a \times b
or a \cdot b
a × b or a · b Division a \div b
or a / b
a ÷ b or a / b Powers a^2
or a^{10}
a² or a¹⁰ Subscripts a_1
or a_{ij}
a₁ or aᵢⱼ
Fractions and Binomials
Fractions
% Basic fraction
\frac {1}{2}
% Nested fractions
\frac {1}{1 + \frac {1}{2}}
% Display style in inline math
$ \displaystyle\frac{ 1 }{ 2 } $
% Text style in display math
\[ \textstyle\frac{ 1 }{ 2 } \]
% Continued fractions
\cfrac {1}{2 + \cfrac {1}{3 + \cfrac {1}{4}}}
Rendered output:
\frac{1}{2}
→ 1/2
\frac{a+b}{c+d}
→ (a+b)/(c+d)
\frac{1}{1 + \frac{1}{2}}
→ 1/(1 + 1/2)
Binomial Coefficients
% Binomial coefficient
\binom {n}{k} = \frac {n!}{k!(n-k)!}
% Different styles
\dbinom {n}{k} % Display style
\tbinom {n}{k} % Text style
Rendered output:
\binom{n}{k}
→ (n k)
\frac{n!}{k!(n-k)!}
→ n! / k!(n-k)!
Roots and Radicals
% Square root
\sqrt {x}
% nth root
\sqrt [n]{x}
% Complex expressions
\sqrt {a^2 + b^2}
% Nested roots
\sqrt { \sqrt {x} + 1}
% Large expressions
\sqrt { \frac {x^2 + y^2}{2}}
Rendered output:
\sqrt{x}
→ √x
\sqrt[n]{x}
→ ⁿ√x
\sqrt{a^2 + b^2}
→ √(a² + b²)
Sums, Products, and Integrals
Summation
% Basic sum
\sum _{i=1}^{n} i = \frac {n(n+1)}{2}
% Display style
\displaystyle\sum _{i=1}^{n} i
% Multiple indices
\sum _{ \substack {i=1 \\ j=1}}^{n} a_{ij}
% Infinite series
\sum _{n=0}^{ \infty } \frac {x^n}{n!} = e^x
Rendered output:
\sum_{i=1}^{n} i
→ Σ(i=1 to n) i
\sum_{n=0}^{\infty} x^n
→ Σ(n=0 to ∞) x^n
Products
% Basic product
\prod _{i=1}^{n} i = n!
% Infinite product
\prod _{n=1}^{ \infty } \left (1 - \frac {1}{n^2} \right )
% Co-product
\coprod _{i \in I} X_i
Integration
% Indefinite integral
\int f(x) \, dx
% Definite integral
\int _a^b f(x) \, dx
% Multiple integrals
\iint _D f(x,y) \, dx \, dy
\iiint _V f(x,y,z) \, dx \, dy \, dz
% Contour integrals
\oint _C F \cdot dr
% With limits
\int\limits _0^1 x^2 \, dx = \frac {1}{3}
Rendered output:
\int f(x) \, dx
→ ∫ f(x) dx
\int_a^b f(x) \, dx
→ ∫(from a to b) f(x) dx
\oint_C F \cdot dr
→ ∮ F · dr around C
Limits and Derivatives
Limits
% Basic limit
\lim _{x \to 0} \frac { \sin x}{x} = 1
% Limits with approach direction
\lim _{x \to 0^+} f(x)
\lim _{x \to 0^-} f(x)
% Limits to infinity
\lim _{n \to \infty } \left (1 + \frac {1}{n} \right )^n = e
% Supremum and infimum
\sup _{x \in A} f(x)
\inf _{x \in A} f(x)
Rendered output:
\lim_{x \to 0} \frac{\sin x}{x}
→ lim(x→0) sin(x)/x = 1
\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n
→ lim(n→∞) (1 + 1/n)^n = e
Derivatives
% First derivative
f'(x) \text { or } \frac {df}{dx}
% Higher derivatives
f''(x) \text { or } \frac {d^2f}{dx^2}
% Partial derivatives
\frac { \partial f}{ \partial x}
\frac { \partial ^2 f}{ \partial x \partial y}
% With evaluation
\left . \frac {df}{dx} \right |_{x=0}
Rendered output:
f’(x)
→ f’(x) (first derivative)
\frac{df}{dx}
→ df/dx (derivative notation)
\frac{\partial f}{\partial x}
→ ∂f/∂x (partial derivative)
Brackets and Delimiters
Automatic Sizing
% Manual sizing
( \big ( \Big ( \bigg ( \Bigg (
% Automatic sizing
\left ( \frac {1}{2} \right )
\left [ \sum _{i=1}^n i \right ]
\left \{ x : x > 0 \right \}
% Mixed delimiters
\left < \frac {a}{b} \right |
\left\lfloor x \right\rfloor
\left\lceil x \right\rceil
Special Cases
% Cases
f(x) = \begin { cases }
x^ 2 & \text{if } x \geq 0 \\
-x^ 2 & \text{if } x < 0
\end { cases }
% Matrices with brackets
\begin { pmatrix }
a & b \\
c & d
\end { pmatrix }
% Norms and absolute values
\| x \| = \sqrt {x_1^2 + x_2^2}
|x| = \begin { cases }
x & \text{if } x \geq 0 \\
-x & \text{if } x < 0
\end { cases }
Functions and Operators
Standard Functions
% Trigonometric
\sin x, \cos x, \tan x
\arcsin x, \arccos x, \arctan x
% Exponential and logarithmic
\exp (x), e^x
\log x, \ln x, \log _2 x
% Hyperbolic
\sinh x, \cosh x, \tanh x
% Other functions
\max (a,b), \min (a,b)
\gcd (a,b), \det (A)
Custom Operators
% Define new operators
\DeclareMathOperator { \sgn }{sgn}
\DeclareMathOperator { \tr }{tr}
\DeclareMathOperator *{ \argmax }{arg \, max}
% Usage
\sgn (x) = \begin { cases }
1 & x > 0 \\
0 & x = 0 \\
- 1 & x < 0
\end { cases }
\argmax _{x \in \mathbb {R}} f(x)
Advanced Techniques
Aligning Equations
\begin { align }
(a + b)^ 2 & = (a + b)(a + b) \\
& = a^ 2 + ab + ba + b^ 2 \\
& = a^ 2 + 2 ab + b^ 2
\end { align }
% Without numbering
\begin { align* }
e^{i \pi } + 1 & = 0 \\
e^{i \pi } & = - 1
\end { align* }
Text in Math Mode
% Using \text
f(x) = x^2 \text { for all } x \in \mathbb {R}
% Using \intertext in align
\begin { align }
a & = b + c \\
\intertext{and therefore}
a - b & = c
\end { align }
% Math in text
The value of $ \pi $ is approximately $ 3.14159 $ .
Common Mistakes to Avoid
Common errors :
Forgetting braces for multi-character superscripts: Use x^{10}
not x^10
Missing \
before functions: Use \sin x
not sin x
Wrong math mode: Use $...$
for inline, \[...\]
for display
Inconsistent notation: Stick to one style throughout your document
Best Practices
Use Proper Spacing Add thin spaces with \,
in integrals: \int f(x) \, dx
Choose Right Size Use \dfrac
for display fractions in inline math
Be Consistent Use the same notation style throughout your document
Number Wisely Only number equations you reference
Further Reading