Complete guide to typesetting chemical formulas, equations, and reaction mechanisms in LaTeX. Learn mhchem, chemfig, and advanced chemistry notation.
mhchem
for chemical equations and chemfig
for molecular structures. These packages handle subscripts, superscripts, arrows, and complex chemical notation automatically.Related topics: Mathematical notation | Scientific notation | Symbols and special characters\documentclass{article}
\usepackage[version=4]{mhchem}
\begin{document}
\section{Chemical Formulas}
% Simple formulas
Water: \ce{H2O}
Sulfuric acid: \ce{H2SO4}
Methane: \ce{CH4}
% Complex formulas with charges
Hydronium ion: \ce{H3O+}
Sulfate ion: \ce{SO4^2-}
Ammonium: \ce{NH4+}
% Isotopes
Carbon-14: \ce{^14C}
Uranium-235: \ce{^235U}
Deuterium oxide: \ce{^2H2O}
% States of matter
Solid sodium chloride: \ce{NaCl_{(s)}}
Aqueous hydrochloric acid: \ce{HCl_{(aq)}}
Gaseous carbon dioxide: \ce{CO2_{(g)}}
Liquid water: \ce{H2O_{(l)}}
\end{document}
\documentclass{article}
\usepackage[version=4]{mhchem}
\begin{document}
\section{Chemical Reactions}
% Simple reaction
\ce{2H2 + O2 -> 2H2O}
% Reversible reaction
\ce{N2 + 3H2 <=> 2NH3}
% Equilibrium with conditions
\ce{CaCO3_{(s)} <=>[\Delta] CaO_{(s)} + CO2_{(g)}}
% Multiple steps
\begin{align}
\ce{CH4 + 2O2 &-> CO2 + 2H2O} \\
\ce{2H2 + O2 &-> 2H2O} \\
\ce{C + O2 &-> CO2}
\end{align}
\section{Complex Reactions}
% Precipitation reaction
\ce{AgNO3_{(aq)} + NaCl_{(aq)} -> AgCl_{(s)} v + NaNO3_{(aq)}}
% Acid-base reaction
\ce{HCl_{(aq)} + NaOH_{(aq)} -> NaCl_{(aq)} + H2O_{(l)}}
% Oxidation-reduction
\ce{Zn_{(s)} + Cu^2+_{(aq)} -> Zn^2+_{(aq)} + Cu_{(s)}}
% Organic reaction with mechanism
\ce{CH3CH2OH ->[H2SO4][\Delta] CH2=CH2 + H2O}
% Enzyme-catalyzed reaction
\ce{glucose + O2 ->[enzyme] CO2 + H2O + ATP}
\section{Reaction Mechanisms}
% Nucleophilic substitution
\ce{R-X + Nu^- -> R-Nu + X^-}
% Addition reaction
\ce{CH2=CH2 + HBr -> CH3CH2Br}
% Elimination reaction
\ce{CH3CH2Br + OH^- -> CH2=CH2 + Br^- + H2O}
\end{document}
\documentclass{article}
\usepackage[version=4]{mhchem}
\usepackage{amsmath}
\begin{document}
\section{Advanced Chemical Notation}
% Coordination compounds
Hexaamminecobalt(III) chloride: \ce{[Co(NH3)6]Cl3}
Potassium hexacyanoferrate(II): \ce{K4[Fe(CN)6]}
% Transition states
\ce{A + B ->[TS] P}
% Catalysts above arrows
\ce{benzene ->[AlCl3] methylbenzene}
\ce{ethene + H2 ->[Ni][\Delta] ethane}
% Multiple arrows
\ce{A ->[k1] B ->[k2] C}
\ce{reactants <=>[\ce{k_{forward}}][\ce{k_{reverse}}] products}
% Electron configurations
Ground state oxygen: \ce{[He] 2s^2 2p^4}
Excited state carbon: \ce{[He] 2s^1 2p^3}
\section{Thermodynamic Notation}
% Enthalpy changes
\ce{CH4_{(g)} + 2O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)}} \quad $\Delta H = -890$ kJ/mol
% Equilibrium expressions
\ce{N2_{(g)} + 3H2_{(g)} <=> 2NH3_{(g)}} \quad $K_c = \frac{[\ce{NH3}]^2}{[\ce{N2}][\ce{H2}]^3}$
% Rate expressions
Rate = $k[\ce{A}]^m[\ce{B}]^n$
\section{Biochemical Notation}
% Amino acids
Glycine: \ce{NH2CH2COOH}
Alanine: \ce{NH2CH(CH3)COOH}
% Phosphorylation
\ce{ATP + H2O -> ADP + Pi + energy}
% DNA bases
Adenine: \ce{C5H5N5}
Guanine: \ce{C5H5N5O}
\end{document}
\documentclass{article}
\usepackage{chemfig}
\begin{document}
\section{Basic Molecular Structures}
% Simple molecules
Methane: \chemfig{C(-[1]H)(-[3]H)(-[5]H)(-[7]H)}
Water: \chemfig{H-O-H}
Ammonia: \chemfig{N(-[1]H)(-[5]H)(-[7]H)}
% Linear molecules
Ethane: \chemfig{H_3C-CH_3}
Propane: \chemfig{H_3C-CH_2-CH_3}
% Branched molecules
Isobutane: \chemfig{H_3C-CH(-[2]CH_3)-CH_3}
% Double bonds
Ethene: \chemfig{H_2C=CH_2}
Carbon dioxide: \chemfig{O=C=O}
% Triple bonds
Ethyne: \chemfig{HC~CH}
Hydrogen cyanide: \chemfig{H-C~N}
\section{Cyclic Structures}
% Cyclohexane
\chemfig{*6(------)}
% Benzene
\chemfig{*6(=-==-=)}
% Cyclopentane
\chemfig{*5(-----)}
% Substituted benzene
Toluene: \chemfig{*6(=-=(-CH_3)-=)}
Phenol: \chemfig{*6(=-=(-OH)-=)}
\end{document}
\documentclass{article}
\usepackage{chemfig}
\begin{document}
\section{Complex Organic Molecules}
% Glucose
Glucose: \chemfig{HO-[1,0.5,2]?<[7,0.7]OH>[1,0.7]?<[2,0.5]OH>[3,0.7]?<[4]OH>[4,0.7]?<[3,0.5]OH>[7,0.7]?(-[1,0.3]O-[7,0.3]?)}
% Caffeine
Caffeine: \chemfig{*6((-N*5(-(-CH_3)-N=-N(-CH_3)-))=N-=(-N(-CH_3))=*6(-(-=O)-N(-CH_3)-(-=O)-N=-=))}
% Cholesterol (simplified)
Cholesterol: \chemfig{*6((-*6(-----(-OH)))---(-*5(---(-*6(------))--))-(-(=)-(-[1])-([7]))---)}
\section{Functional Groups}
% Alcohol
Primary alcohol: \chemfig{R-CH_2-OH}
Secondary alcohol: \chemfig{R-CH(-[2]OH)-R'}
Tertiary alcohol: \chemfig{R-C(-[2]OH)(-[6]R')(-[7]R'')}
% Carbonyl compounds
Aldehyde: \chemfig{R-C(=[2]O)-H}
Ketone: \chemfig{R-C(=[2]O)-R'}
% Carboxylic acid derivatives
Carboxylic acid: \chemfig{R-C(=[2]O)-OH}
Ester: \chemfig{R-C(=[2]O)-O-R'}
Amide: \chemfig{R-C(=[2]O)-N(-[6]H)-H}
% Aromatic functional groups
Aniline: \chemfig{*6(=-=(-NH_2)-=)}
Benzoic acid: \chemfig{*6(=-=(-C(=[2]O)-OH)-=)}
\section{Stereochemistry}
% Wedge and dash bonds
Tetrahedral carbon: \chemfig{C(-[1,,,1]H)(-[3,,,2]Cl)(-[5]Br)(-[7]F)}
% Chair conformation
Cyclohexane chair: \chemfig{*6((-[2]H)(-[6]H)-(-[2]H)(-[6]H)-(-[2]H)(-[6]H)---)}
% Newman projection
Newman projection: \chemfig{*6((-H)(-H)(-H)-*6((-H)(-H)(-H)---)---)}
\end{document}
\documentclass{article}
\usepackage{chemfig}
\usepackage[version=4]{mhchem}
\begin{document}
\section{Organic Reaction Schemes}
% SN2 reaction
\schemestart
\chemfig{H_3C-CH_2-Br}
\+
\chemfig{OH^{-}}
\arrow{->[SN2]}
\chemfig{H_3C-CH_2-OH}
\+
\chemfig{Br^{-}}
\schemestop
% Addition reaction
\schemestart
\chemfig{H_2C=CH_2}
\+
\chemfig{HBr}
\arrow{->}
\chemfig{H_3C-CH_2Br}
\schemestop
% Multistep synthesis
\schemestart
\chemfig{*6(=-=(-CH_3)-=)}
\arrow{->[KMnO_4][H^+, heat]}
\chemfig{*6(=-=(-C(=[2]O)-OH)-=)}
\arrow{->[SOCl_2]}
\chemfig{*6(=-=(-C(=[2]O)-Cl)-=)}
\arrow{->[NH_3]}
\chemfig{*6(=-=(-C(=[2]O)-NH_2)-=)}
\schemestop
\section{Biochemical Pathways}
% Glycolysis step
\schemestart
\chemfig{glucose}
\arrow{->[hexokinase][ATP, Mg^{2+}]}
\chemfig{glucose-6-phosphate}
\arrow{->[phosphoglucose isomerase]}
\chemfig{fructose-6-phosphate}
\schemestop
% Peptide bond formation
\schemestart
\chemfig{H_2N-CH(-[6]R_1)-C(=[2]O)-OH}
\+
\chemfig{H_2N-CH(-[6]R_2)-C(=[2]O)-OH}
\arrow{->[condensation][-H_2O]}
\chemfig{H_2N-CH(-[6]R_1)-C(=[2]O)-NH-CH(-[6]R_2)-C(=[2]O)-OH}
\schemestop
\section{Coordination Chemistry}
% Octahedral complex
Octahedral \ce{[Co(NH3)6]^3+}:
\chemfig{Co(-[0]NH_3)(-[60]NH_3)(-[120]NH_3)(-[180]NH_3)(-[240]NH_3)(-[300]NH_3)}
% Square planar complex
Square planar \ce{[PtCl4]^2-}:
\chemfig{Pt(-[0]Cl)(-[90]Cl)(-[180]Cl)(-[270]Cl)}
% Chelating ligand
EDTA complex:
\chemfig{(-[1]OOC-CH_2)_2N-CH_2-CH_2-N(-[7]CH_2-COO)_2}
\end{document}
\documentclass{article}
\usepackage[version=4]{mhchem}
\usepackage{siunitx}
\begin{document}
\section{NMR Spectroscopy}
% Chemical shifts
\ce{^1H} NMR (400 MHz, CDCl$_3$): $\delta$ 7.26 (s, 5H, Ph), 3.85 (s, 3H, OCH$_3$), 2.45 (t, 2H, CH$_2$)
\ce{^13C} NMR (100 MHz, CDCl$_3$): $\delta$ 170.2 (C=O), 128.5 (Ar-C), 55.2 (OCH$_3$), 34.1 (CH$_2$)
% Coupling constants
\ce{^1H} NMR: $\delta$ 6.95 (d, $J$ = 8.0 Hz, 2H), 4.12 (q, $J$ = 7.2 Hz, 2H)
% Two-dimensional NMR
COSY, HSQC, and HMBC correlations confirm the structure.
\section{IR Spectroscopy}
IR (KBr): $\tilde{\nu}$ = \SI{3300}{\per\centi\meter} (O-H stretch), \SI{1720}{\per\centi\meter} (C=O stretch), \SI{1600}{\per\centi\meter} (C=C stretch)
FT-IR (neat): \SI{2950}{\per\centi\meter} (C-H stretch), \SI{1735}{\per\centi\meter} (ester C=O), \SI{1250}{\per\centi\meter} (C-O stretch)
\section{Mass Spectrometry}
MS (EI, 70 eV): $m/z$ (\%) = 180 (M$^+$, 45), 152 (M$^+$ - CO, 100), 124 (M$^+$ - 2CO, 75)
HRMS (ESI): $m/z$ calculated for \ce{C10H12NO2} [M+H]$^+$ 178.0868, found 178.0865
\section{Elemental Analysis}
Anal. Calculated for \ce{C15H14N2O3}: C, 66.66; H, 5.22; N, 10.36. Found: C, 66.58; H, 5.18; N, 10.41.
\section{Crystallography}
Crystal data: \ce{C12H10N2O}, $M$ = 198.22, monoclinic, space group $P2_1/c$, $a$ = \SI{7.123}{\angstrom}, $b$ = \SI{15.456}{\angstrom}, $c$ = \SI{9.876}{\angstrom}, $\beta$ = 105.23°, $V$ = \SI{1045.2}{\angstrom\cubed}, $Z$ = 4.
\end{document}
\documentclass{article}
\usepackage[version=4]{mhchem}
\usepackage{amsmath}
\usepackage{siunitx}
\begin{document}
\section{Thermodynamics}
% Standard formation enthalpies
$\Delta_f H^\circ$ (\ce{H2O}, l) = \SI{-285.8}{\kilo\joule\per\mole}
$\Delta_f H^\circ$ (\ce{CO2}, g) = \SI{-393.5}{\kilo\joule\per\mole}
% Gibbs free energy
$\Delta G = \Delta H - T\Delta S$
For the reaction \ce{N2 + 3H2 <=> 2NH3}:
$\Delta G^\circ = -2 \times \SI{16.5}{\kilo\joule\per\mole} = \SI{-33.0}{\kilo\joule\per\mole}$
% Equilibrium constant
$K_p = \frac{P_{\ce{NH3}}^2}{P_{\ce{N2}} \cdot P_{\ce{H2}}^3}$
$\ln K = -\frac{\Delta G^\circ}{RT}$
\section{Chemical Kinetics}
% Rate laws
For \ce{A + B -> C}, the rate law is:
\[
\text{Rate} = k[\ce{A}]^m[\ce{B}]^n
\]
% Integrated rate laws
First order: $\ln[\ce{A}] = \ln[\ce{A}]_0 - kt$
Second order: $\frac{1}{[\ce{A}]} = \frac{1}{[\ce{A}]_0} + kt$
% Arrhenius equation
$k = A e^{-E_a/RT}$
$\ln k = \ln A - \frac{E_a}{RT}$
\section{Electrochemistry}
% Nernst equation
$E = E^\circ - \frac{RT}{nF} \ln Q$
At 298 K: $E = E^\circ - \frac{0.0592}{n} \log Q$
% Standard reduction potentials
\ce{Cu^2+ + 2e^- -> Cu} \quad $E^\circ = +\SI{0.34}{\volt}$
\ce{Zn^2+ + 2e^- -> Zn} \quad $E^\circ = -\SI{0.76}{\volt}$
% Cell notation
\ce{Zn | Zn^2+ (1 M) || Cu^2+ (1 M) | Cu}
$E_{\text{cell}}^\circ = E_{\text{cathode}}^\circ - E_{\text{anode}}^\circ = 0.34 - (-0.76) = \SI{1.10}{\volt}$
\section{Quantum Chemistry}
% Schrödinger equation
$\hat{H}\Psi = E\Psi$
% Hydrogen atom wavefunctions
$\Psi_{1s} = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$
% Molecular orbitals
For \ce{H2^+}: $\Psi_{\pm} = \frac{1}{\sqrt{2 \pm 2S}}(\phi_A \pm \phi_B)$
% Electronic configurations
\ce{C}: $1s^2 2s^2 2p^2$
\ce{Fe^3+}: $[\ce{Ar}] 3d^5$
\end{document}
\documentclass{article}
\usepackage[version=4]{mhchem}
\usepackage{chemfig}
\usepackage{modiagram}
\begin{document}
\section{Package Comparison}
\begin{tabular}{|l|l|l|}
\hline
\textbf{Package} & \textbf{Best For} & \textbf{Examples} \\
\hline
mhchem & Chemical equations & \ce{H2SO4}, \ce{A + B -> C} \\
& Formulas with charges & \ce{NH4+}, \ce{SO4^2-} \\
& Reaction arrows & \ce{A <=> B} \\
\hline
chemfig & Molecular structures & Benzene rings, stereochemistry \\
& Organic molecules & Complex natural products \\
& Reaction schemes & Multi-step syntheses \\
\hline
modiagram & Molecular orbitals & MO diagrams \\
& Electronic structure & Energy level diagrams \\
\hline
\end{tabular}
\section{Molecular Orbital Diagrams}
% Simple MO diagram for H2
\begin{modiagram}[labels]
\atom[N]{left}{1s}
\atom[N]{right}{1s}
\molecule[N]{
1sigma = {0; pair}
}
\end{modiagram}
% More complex example for O2
\begin{modiagram}[labels]
\atom[O]{left}{2s, 2p = {;pair,up,up}}
\atom[O]{right}{2s, 2p = {;pair,up,up}}
\molecule[O2]{
2sigma = {0; pair},
2sigma* = {1.5; },
2piy = {-1; pair},
2piz = {-1; pair},
2pix = {0.5; up, up},
2pix* = {2; }
}
\end{modiagram}
\end{document}
\documentclass{article}
\usepackage[version=4]{mhchem}
\usepackage{chemfig}
\usepackage{siunitx}
\usepackage{amsmath}
\usepackage{booktabs}
% Custom commands for common notation
\newcommand{\conc}[1]{[\ce{#1}]}
\newcommand{\std}{\circ}
\begin{document}
\title{Synthesis and Characterization of Novel Organic Compounds}
\author{Chemistry Department}
\maketitle
\section{Experimental}
\subsection{Synthesis of Compound 1}
To a solution of \ce{benzaldehyde} (\SI{1.06}{\gram}, \SI{10.0}{\milli\mole}) in dry \ce{CH2Cl2} (\SI{20}{\milli\liter}) was added \ce{NaBH4} (\SI{0.38}{\gram}, \SI{10.0}{\milli\mole}) at \SI{0}{\celsius}. The reaction mixture was stirred for \SI{2}{\hour} at room temperature.
\schemestart
\chemfig{*6(=-=(-CHO)-=)}
\arrow{->[NaBH_4][CH_2Cl_2, rt]}
\chemfig{*6(=-=(-CH_2OH)-=)}
\schemestop
\subsection{Characterization}
\textbf{Compound 1}: Colorless oil. Yield: \SI{92}{\percent}.
\textbf{\ce{^1H} NMR} (400 MHz, CDCl$_3$): $\delta$ 7.38-7.28 (m, 5H, Ar-H), 4.68 (s, 2H, CH$_2$), 2.15 (br s, 1H, OH).
\textbf{\ce{^13C} NMR} (100 MHz, CDCl$_3$): $\delta$ 140.8, 128.4, 127.6, 126.9, 65.1.
\textbf{IR} (neat): $\tilde{\nu}$ = \SI{3330}{\per\centi\meter} (O-H), \SI{3030}{\per\centi\meter} (Ar-H), \SI{2924}{\per\centi\meter} (C-H), \SI{1496}{\per\centi\meter}, \SI{1454}{\per\centi\meter} (Ar).
\textbf{MS} (EI): $m/z$ (\%) = 108 (M$^+$, 25), 79 (100), 77 (85).
\section{Results and Discussion}
The reaction proceeded via a nucleophilic addition mechanism:
\begin{align}
\ce{C6H5CHO + BH4^- &-> C6H5CH2O^-BH3} \\
\ce{C6H5CH2O^-BH3 + H2O &-> C6H5CH2OH + B(OH)3 + H2}
\end{align}
The equilibrium constant for the hydride transfer is:
\[
K_{eq} = \frac{\conc{C6H5CH2O^-BH3}}{\conc{C6H5CHO}\conc{BH4^-}}
\]
Thermodynamic analysis shows $\Delta G\std = \SI{-15.2}{\kilo\joule\per\mole}$ for this transformation at \SI{298}{\kelvin}.
\end{document}
Command | Purpose | Example |
---|---|---|
\ce{formula} | Chemical formula | \ce{H2SO4} |
\ce{A + B -> C} | Chemical equation | \ce{2H2 + O2 -> 2H2O} |
\ce{A <=> B} | Equilibrium | \ce{N2 + 3H2 <=> 2NH3} |
\ce{^14C} | Isotope | \ce{^14C} |
\ce{SO4^2-} | Ion with charge | \ce{SO4^2-} |
Notation | LaTeX Code | Result |
---|---|---|
Subscript | \ce{H2O} | H₂O |
Superscript | \ce{Ca^2+} | Ca²⁺ |
State | \ce{NaCl_{(s)}} | NaCl₍ₛ₎ |
Arrow | \ce{->} | → |
Equilibrium | \ce{<=>} | ⇌ |
Element | Code | Description |
---|---|---|
Single bond | - | Single bond |
Double bond | = | Double bond |
Triple bond | ~ | Triple bond |
Angle | [angle] | Bond angle |
Ring | *n(bonds) | n-membered ring |
Was this page helpful?